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Incompleteness. 

• Lecture notes presented here are 
incomplete, due to the same argument 
known as Cantors diagonalization
argument. 

– Dr.M. Sakalli



Uncountable SET-not enumerable  
• A set is uncountable if its cardinal number is larger than that of the set of 

all cardinal numbers. 
• Its characterization iff any holds..

– No injective correspondence (f) from X to the set of natural numbers. 
– X is nonempty and there is surjective function from  the set of natural 

numbers to X. 
– The cardinality of X is neither finite nor equal to the cardinality of natural 

numbers!!
– The cardinality of X is strictly grater than cardinality of natural number.

• If cardinality of subset of a set Y is infinite, than set Y is uncountable.
• Cantor’s diagonal argument. 
• Uncountable sets

– R, the cardinality of R (c or 2N0, ]1 - beth-one) is called cardinality of the 
continuum. ]2 beth-two cardinality of more uncountable numbers.  

– Cantor set that is an uncountable subset of R and has Hausdorff dimension 
number between 0 and 1. (Fact: Any subset of R of Hausdorff dimension 
greater than 0 must be uncountable).  

– Earlier Cantor poses question if ]1 = N1 (aleph1), cardinality of ordinal 
numbers, 

– First in the list of Hilbert’s 23 questions, 1900.        



Schubfachprinzip drawer principle
• n pigeons > m nests. 10 to 9, at least one nest 

must be shared. At least one box must contain 
no fewer than ceiling(n/m), and at least one box 
must contain no more than floor(n/m). 

• Collision probability with a uniform probability of 
1/m is equal to 

• 1-{m(m-1)..(m-n+1)}/mn

• If the cardinality of set A is greater than those of 
set B, then there is NO injection from A to B.  



Numbers that cannot be counted cannot be computed, but 
infinite c programs can be counted. 

• static void Main() 1/7.. 
• { Console.Write("0."); 

while (true) Console.Write("142857");
• } 
• Pi
• …



Cantor’s Diagonal Argument
Let T be a set of consisting all infinite sequences, and its 

permutations of S=f(i).
• Characteristic function of sequence is a function f(i)=1. 
• If X has characteristic function f, then its complement is 1-

f(i).  
Sequence S is countable since possible to associate only 

one number n of N for every element of the sequence S. 
And T is countable.. 
• s1 = {1…..0 ….}, f1(i) mapping f(i)
• s2 = {……., ….}, f2(i)
• s3 = 
• ..
• Thus new s is not in {s1, s2, s3, ...}. 

This contradicts the assumption that the list has contained 
all the sequences. 



Cantor’s Diagonal Argument
• All the possible countable numbers must be 

included in the set, but always possible to obtain 
another s0=cmplt{diag(T)}=cmplt(fn(n))=cmplt(sn,n), 
which is s0 ∉ T.  Cmplt referes complement of.  

• Therefore T is uncountable, since if S0. included in, 
there will be another one which cannot be placed 
in one-to-one correspondence with the set of N.

• There is no bijection between N and T, but T may 
be subcountable.  

• Although both sets are infinite in conclusion there 
are more infinite sequences of real numbers than 
that could be mapped with natural numbers.  



Cantor’s Diagonal Argument
• Some function will not yield bijection

condition, f(t)=0.t, check if t=1000.. And its 
cmpt(t).. Two different sequences 
corresponds to one number. But possible to 
modify function and avoid this situation that 
takes us to.. I am not sure how to prove, but 
it says that R and T have the same 
cardinality which is called generalized 
cardinality of continuum which is also given 
as cardinality between |S| and |P(s)|. 
Cardinality between integers and reals is 
called continuum hypothesis.    



Inconsistency of notions.
• P(S) is the Power of a set, defined as all the subsets of S. Cantor’s 

theorem states that cardinality of P(S) is larger then those of S. 
• Suppose f is a function from S to P(S), 
• T={s ∈ S: s∉f(s)}, second statement is from Cantor’s 

diagonalization. Either s is in T (by the definition, from the same 
definition f(s)∉T, then |T|+|f(s)| |P(s)|) or if s is not in T, which is a 
violation of the definition, but also and |T|+|s| |P(s)|. 

• Inconsistency of “set of all sets that do not contain themsleves in the 
set”.  

• If S were the set of all sets, then P(S) would be bigger than {S and a 
subset of S}.  

• Similar to Russell's Paradox, based on an unrestricted 
comprehension scheme, is contradictory. 

• Russell’s Paradox if let D = {x| x not in x}. 
Then D in D iff D not in D, a contradiction.  

• For example, the conventional proof of the unsolvability of the 
halting problem is essentially a diagonal argument of Cantors arg. 

• Also, diagonalization was originally used to show the existence of 
arbitrarily hard complexity classes and played a key role in early 
attempts to prove P does not equal NP. In 2008, diagonalization was 
used to "slam the door" on Laplace's demon.1



Russell's paradox
• The set M is the set of all sets that do not contain themselves as 

members. Does M contain itself? 

• If it does, it is not a member of M according to the definition. If it does not, 
then it has to be a member of M, again according to the definition of M. 
Therefore, both of the statements "M is a member of M " and "M is not a 
member of M " lead to contradictions.

For example: 
• "A is an element of M if and only if A is not an element of A". 
• M = {s ∈ S| s∉f(s)}, or M = {x|x∉x}. 

• 1) List of all lists that do not contain themselves.
If the "List of all lists that do not contain themselves" contains itself, then it 
does not belong to itself and should be removed. However, if it does not 
list itself, then it should be added to itself.

2) Barber paradox
The paradox considers a town with a male barber who shaves all and only 
those men who do not shave themselves.



Function x x < 2 is the set of all numbers less 
than 2. 

Set membership is via application: e member-of S iff
S(e) is true. 

Since (Function x x < 2)(1) is true, 1 is in this 
"set". 

Now consider P = "the set of all sets that do not 
contain themselves as members"!:

P = Function x Not(x)(x) (Note, it may make 
sense to have a set with itself as member: the set 
{{{{...}}}}, infinitely receding, has itself as a 
member; this only happens in so-called non-well-
founded set theory).



Now, is P P? Namely is P a member of itself? This 
is written: 

(function x not(x x)) (function x not(x x)) --if this 
were viewed as a D program, it would loop 
forever: 

Compute Not((Function x Not(x x))(Function x 
Not(x x)))) 

Now, notice we have P is a member of itself if and 
only if it isn't, a contradiction!

The computational realization of the paradox is that 
the predicate cannot compute to true or false, so 
its not a sensible logical statement.  

To avoid this problem, Russell developed his theory 
of types. 



Avoiding Russell's paradox: type theory 
and axiomatic set theory

• Old classic set of self-referential paradoxical statements causing 
ambiguities that are neither true nor false could be avoided. 

• In mathematical terms. the set of all sets that are members of the 
themselves, permitting self-referential sets, allowing the set of all 
sets that contain themselves as a member. 

• But the set of all sets that do not contain themselves as a member? 
are they a member of themselves.

• To avoid paradox, Russell with Whitehead propose a type theory, 
in which sentences were arranged hierarchically. 

• This definition avoids the paradox: the definition of R must now
define R as a set of type k set containing all sets of type k − 1 and 
below that do not contain themselves as members. Since R is a type 
k set, it cannot contain itself, since it cannot contain any type k sets. 
This avoids the possibility of having to talk about “the set of all sets
that are not members of themselves”, because the two parts of the 
sentence are of different types - that is, at different levels. 



Avoiding Russell's paradox: type theory 
and axiomatic set theory

• This definition avoids the paradox: the definition of R 
must now define R as a set of type k set containing all 
sets of type k − 1 and below that do not contain 
themselves as members. Since R is a type k set, it 
cannot contain itself, since it cannot contain any type k 
sets. This avoids the possibility of having to talk about 
“the set of all sets that are not members of themselves”, 
because the two parts of the sentence are of different 
types - that is, at different levels. 

• Another approach to avoid such types of paradoxes was 
an axiomatic set theory, proposed by Ernst Zermelo. 
This theory determines what operations were allowed 
and when. 



Some Logics used in 
axiomatizations of mathematics

• A logic usually refers to a set of rules about constructing 
valid sentences. Here are a few logics. Propositional 
logic concerns sentences such as (p ∨¬q) ∧ (¬p ∧ r) 
where p, q, r are boolean variables. Recall that the SAT 
problem consists of determining the satisfiability of such 
sentences. In first order logic, the symbols allowed are 
relation and function symbols as well as quantification 
symbols ∃ and ∀. For instance, the statement ∀xS(x) ≠x
is a first order sentence in which x is quantified 
universally, S() is a unary relation symbol and ≠ is a 
binary relation. Finally, second order logic allows 
sentences in which one is allowed quantification over 
structures, i.e., functions and relations. An example of a 
second order sentence is ∃S∀xS(x) ≠ x, where S is a 
unary relation symbol.



Corollary: There are uncountably
many subsets of N.  D:\godel.html

• Hence one must accept that not possible to comprehend 
the list of comprehensible sequences. 

• The same applies to "sequences which God can 
comprehend". Thus omniscience has some limits. 



Godel showed that a formal system that is both complete and 
consistent could not be created since he proved that any 
formal system which is complete cannot be prevented from 
including self-referential statements. The way that happens 
is through something called models - a formal system is only 
valid if there is a model which fits its system of rules. If a 
system is capable of being represented by a model which is 
complete, then it is also capable of being represented by a 
model which encodes self-referential statements, and thus 
comes the self referential paradox.

Alan Turing and others were interested in with a mechanical 
perfect complete computing device. If such a system exists, 
then one can use a computer program with the rules of that 
system to enumerate every true statement - or can write a 
program which can take any statement as input, and tell 
whether or not that statement is true. REDUCTION.

Which was something not possible as proved by Godel. But 
Turing and others found an easier way to prove its 
impossibility: the halting problem.



The halting problem considers a simple question: Write a 
program which looks at any arbitrary computer programs, 
and determines whether or not any other prg will eventually 
stop when it is run for some input. 
Computing system S(p,i), which computes a function with a 
pair of inputs that are a program p, and an input i for that 
program of p, then, we are writing a program P which will 
take a pair (Sj(q,i), j) as an input, and gives an answer of 
TRUE if S(q,i) eventually halts.

By feeding the program itself we drive it into a never ending 
status which means halting problem cannot return an answer 
which means it will never return a solution, therefore problem 
is unsolvable. Contradiction that can be also justified with 
Cantor’s digitalization, that is also Godel’s incompleteness.   
P() = S(i, i)+ 1, if S(i, i)={0, 1} P={1,0}.

Question a program that is going to generate P, cannot 
generate P, therefore S is incomplete.  



• S is a collection of the objects that are members of the set S. 
• fs(i) is a function which takes input i∈N, and returns “True 1 

or False 0" (decision) for values that are/aren't members of 
the set, respectively.
Define a function g which just asks, what does fs return if you 
give it ‘s∈S’ as an input? 

• 1) If fs(s) returns true, then g(s) returns True; if fs(s) returns 
False, then g(s) also returns False (declining f’s wrong 
decision, since s∈S). 

• 2) Think reverse scenario. s∉S, If fs(s) returns True, then g(s) 
must return False.   

• 1- g(s) is then a confirmation function for the set of all sets 
that do contain themselves as members. 

• 2- g(s) is also a confirmation function for the set of all sets 
that donot contain themselves as members. 

• Is g a member of itself? There are two different valid 
functions fitting to the definition of g - one which contains 
itself, and the other which doesn't contain itself: a flip of g: g'. 



• Is g a member of itself? There are two different valid 
functions fitting to the definition of g - one which contains 
itself, one which doesn't. but just a flip of g: g'. 

• g‘(s) is the function for the set of all sets that do not 
contain themselves as members. if g'(s) returns true, s 
does not contain itself as member of S, that is s ∉S. 

• Suppose s=g’, flipping regions. 

• Inconsistency of g'. (Russel’s paradox): if g'(g') returns 
true, then g' is a member of itself, which is wrong, so 
g'(g') should have been false. And if g'(g') returns false, 
then that means that g' is not a member of itself, which 
means that g'(g') should have returned true. 



• We say that the elements of a set can be counted if they 
can be listed in a single sequence. N, neg or positive 
wouldn’t matter. 

• Cantor’s D.
• Anything that can be computed according to a finite list of 

rules, can be computed by one of TM. Consistent 

• Briefly, a Turing machine can be thought of as a black box, 
which performs a calculation of some kind on an input
number. If the calculation reaches a conclusion, or halts
then an output number is returned. 

• One of the consequences of Turing's theory is that there is a 
Universal (GENERIC) Turing machine, in other words one 
which can simulate all possible Turing machines. This 
means that we can think of the Turing machines as 
countable and listed T1, T2,... by a Universal Machine 
through a sort of alphabetical listing. Turing used this to 
describe his own version of Gödel's Theorem: that there is 
no mechanical procedure for telling whether a Turing 
machine will halt on a given input: the Halting Problem. 



• The set of functions is uncountable, the set of turing machines 
(programs) is countable, therefore there are more functions than
programs. By the diagonal argument Turing proves that the 
existence of a TM that decides the halting problem is contradictory. 

• Let's represent the result of using the nth Turing machine, Tn on the 
input i as Tn(i). Suppose that there was a rule or procedure for 
deciding whether or not Tn(i) halts for all values of n and i. 

• But then by a similar diagonalising procedure, we can define a new 
Turing machine, say D, which will halt for all inputs and return the 
following output for input i:

• 0 if Ti(i) does not halt.
• Ti(i)+1 if Ti(i) does halt.

• But this machine D must be one of those machines, in other words it 
must be Td for some d. However, we just defined it to give a 
different answer from Td with input d. Contradiction.

• The extra sophistication here over the original diagonalising
argument lies in all the listing done is itself computable and any 
machine Tn may or may not halt in carrying out its computations. 
None of this enters into Cantor's original diagonal argument. 



Computable sequences
• A sequence f(i) is computable if there is a program (Machine) for 

given input i computes f(i). 
• Gödel proved his Completeness Theorem, namely that a 

formula is provable from the axioms iff it is valid. 
• Godel's First InCompleteness Theorem. Any adequate 

axiomatizable theory is incomplete. In particular the sentence 
"This sentence is not provable" is true but not provable in the 
theory. Enumerate 

• Godel's Second Incompleteness Theorem. In any consistent 
axiomatizable theory (axiomatizable means the axioms can be 
computably generated) which can encode sequences of numbers 
(and thus the syntactic notions of "formula", "sentence", "proof") the 
consistency of the system is not provable in the system. 

• The Liar Paradox. "Truth" for English sentences is not definable in 
English. Proof. Suppose it is. Then so is its complement "False". 
Let s be the sentence "This sentence is false" . 
Since the phrase "This sentence" refers to s, we have 
s iff "This sentence is false" iff "s is false" iff not s. 

A contradiction to the statement. “Everything I say is a lie, I am lying”



What can be computable in principle 
• Alonzo Church defined the Lambda calculus, 
• Kurt Gödel defined Recursive functions,
• Stephen Kleene defined Formal systems,
• Markov defined, Markov algorithms, 
• Emil Post and Alan Turing defined abstract machines now known as

Post machines and Turing machines. 
• Church Turing thesis. Anything computable with these 

computational methodologies is computable by a Turing machine. 

• Earlier 1900, David Hilbert believed that all of mathematics could be 
precisely axiomatized. Once this LIST was completed, there would 
be an “effective procedure”, i.e., an algorithm that would accept any 
precise mathematical statement as input, and, after a finite number 
of steps, it would reach to decision whether the statement was true 
or false. YES or NO statement. 

• Hilbert was introducing what is called now a decision procedure for 
all of mathematics.



Satisfiable and Valid Structures
• “Hilbert considered the validity problem for first-order logic”. First-order 

logic is a mathematical language in which most mathematical 
statements can be formulated. This is a special case of decision
problem. 

• Every statement in first-order logic has a precise meaning in every 
appropriate logical structure, i.e., it is true or false in each such 
structure. Those statements that are true in every appropriate structure 
are called valid. Those statements that are true in some structure are 
called satisfiable. 

• Notice that a formula, Φ, is valid iff its negation, ¬Φ, is not satisfiable.

• Hilbert calls First Order Logic as entscheidungsproblem. 
• In a textbook, Principles of Mathematical Logic by Hilbert and 

Ackermann, the authors wrote, “The Entscheidungsproblem is solved 
when we know a procedure that allows for any given logical expression 
to decide by finitely many operations its validity or satisfiability.  SAT or 
3SAT.. Etc.. 



• Axioms and Inference rules. 
• 1930, Gödel’s presents a complete axiomatization of first-order logic, 

based on the Principia Mathematica by Whitehead and Russell 
• He proves in his Completeness Theorem, that a formula is provable 

from the axioms iff it is valid. 

• In particular, since the axioms are easily recognizable, and rules of 
inference very simple, there is a mechanical procedure that can LIST 
out all proofs. 

• Each line in a proof is either an axiom, or a inference following from the 
previous lines by one of the simple rules. 

• For any given string of characters, we can tell if it is a proof. 

• Thus we can systematically list all strings of characters and check 
whether each one is a proof. If so, then we can add the proof's last line 
to our list of theorems. 

• In this way, we can list out all theorems, i.e., exactly all the valid 
formulas of first-order logic, can be listed out by a simple mechanical 
procedure. 



• More precisely, the set of valid formulas is the 
range of a computable function. In modern 
terminology we say that the set of valid formulas of 
first-order logic is recursively enumerable (r.e.).

• “Yes, Φ is valid.” However, if Φ were not valid then 
we might never find this fact out. The list of all the 
non-valid formulas, or the list of all satisfiable
formulas.

• Gödel’s Incompleteness Theorem: there is no 
complete and computable axiomatization of the 
first-order theory of the natural numbers. That is, 
there is no reasonable list of axioms from which we 
can prove exactly all true statements of number 
theory (Gödel 1931).

• Church and Turing independently prove that the 
entscheidungsproblem is unsolvable. Turing’s 
unsolvability of halting problem. 



Application of halting: Goldbach’ s 
conjecture

• Conjecture: (even n) ∧ (n≥2), can be 
represented with two prime numbers p and q as 
n=p+q.

• That could be disproven via counterexample by 
simulating an n-state TM, such that quits (halts-if 
the result is TRUE) if finds a counterexample, an 
even n ≠ (p+q), {p, q}∈primes. Then the 
conjecture will be disproven. 

• If the result is FALSE, then the conjecture is 
proven. That means halting algorithm for this 
problem must not halt. 



• FSM, Busy Beaver. Next week.  


